大模型加持,智能客服实现新一轮变革
大模型的能力进步将对很多领域产生颠覆式影响,客服场景同样也不例外。作为人工智能技术早已渗透多年的场景之一,无论是面向内部员工的自助服务还是面向外部客户的自助服务,智能客服在企业都有着普遍的应用需求。
在大模型出现以前,智能客服主要是基于预设的规则和知识库进行问题解答,这种方式虽然在处理常见和标准问题时效率较高,但也存在显著问题:
第一,有限的理解能力。基于规则的智能客服通常只能理解预设的问题和关键词。这意味着它们很难处理用户以非标准方式表达的问题,如使用方言、行业术语或者含糊其辞的表述。用户提问如果未命中正确的关键词或短语,系统可能无法提供正确的答案。
第二,缺乏上下文感知。传统的智能客服系统通常无法处理涉及多轮对话的上下文信息。这导致在一次会话中,即便是连续的问题,也需要用户重复提供信息,因为系统无法“记住”前一条查询的内容。
第三,交互性和灵活性不足。传统智能客服系统通常按照固定的模式回应用户,缺乏灵活性和自然流畅的交互体验。它们很难根据对话的发展自然地调整回应,使得对话显得机械和僵硬。
第四,知识运维成本高。当出现新的产品特性、政策更新或者市场变化时,基于规则的系统需要人工更新知识库和规则,这种依赖大量手动维护的方式不仅成本高、效率低下,而且容易出错。
第五,个性化服务不足。传统智能客服系统主要基于一般性解答,它们往往无法提供针对个别用户特定需求的个性化服务。对所有用户的回答往往是标准化的,缺乏针对性和个性化的深度。
这些正是大模型可以带来变革的方向。大模型加持下,智能客服可以实现:第一,语义理解能力增强。大模型基于超大规模数据训练,能够理解并处理复杂的语义结构,使得智能客服能够更准确地解析和理解用户的自然语言输入。这些模型利用上下文信息和深层次的语言模式,能够精确识别用户意图,改进意图识别流程。
第二,情绪识别与应对。大模型通常集成了情绪识别技术,能够根据用户的语言和表达推断其情绪状态,手机APP定制开发从而调整回应策略。这种能力使得智能客服在处理客户的问题时更具同理心和人性化,能更有效地管理用户的情绪和满足他们的需求。
第三,更自然的对话体验。大模型能够生成流畅、自然的语言,使得用户与智能客服之间的对话更类似于人与人之间的交流。这种改进不仅增强了用户体验,提升了用户满意度,还有助于构建用户的长期信任和依赖。
第四,知识自动更新。大模型具备持续学习能力,可以通过不断的数据训练来迅速适应新的市场动态、产品变更或政策更新。这使得智能客服系统始终能提供最新、最准确的信息和服务。
第五,个性化服务体验。通过分析用户的历史交互、偏好和上下文对话信息,大模型能够提供定制化的建议和解决方案。个性化服务不仅限于内容的相关性,还包括回应的语气和风格,使得每位用户得到定制化的服务。
从底层核心 NLP 技术的历史演进来看,基于规则的聊天机器人代表了智能客服演进的起点,随着机器学习技术的发展,基于规则的聊天机器人逐渐被基于模式匹配的聊天机器人所取代。而相较于基于规则的聊天机器人,机器学习技术驱动的聊天机器人具有了一定程度的智能,可以处理一些复杂的对话场景;深度学习技术的兴起使得聊天机器人进入了一个新阶段,深度学习技术驱动的聊天机器人采用了RNN(循环神经网络)、GAN(生成对抗网络)等混合 AI技术,使聊天机器人能够进行更加自然和人性化的交互。
大模型技术出现后,聊天机器人的核心技术进一步升级,新技术的出现并不是要完全淘汰之前的技术实现方式,而是在某些模块上进行优化,以实现更好的效果,在人工智能技术组合基础上实现整体选代。例如,大模型虽然提升了聊天机器人的自然语言理解模块,但对于特定任务仍然可以使用正则表达式等基于规则的逻辑实现。
免责声明:我们尊重知识产权、数据隐私,只做内容的收集、整理及分享,报告内容来源于网络,报告版权归原撰写发布机构所有,通过公开合法渠道获得,如涉及侵权,请及时联系我们删除,如对报告内容存疑,请与撰写、发布机构联系
发布于:广东省